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SUMMARY

An investigation has been conducted to determine the effect of the grid non-orthogonality on the
convergence behavior of two-dimensional lid-driven cavity flows. The relevant theory is presented in this
article. In the present work, the contravariant velocity fluxes are used as the dependent variables on
non-orthogonal, non-staggered grids. The momentum equations retain a strongly conservative form. Two
practices for treating the momentum interpolation method in general curvilinear co-ordinates are
presented. In each practice, the momentum interpolation formulations with and without velocity
underrelaxation factor are considered. The discretization equations are solved using the SIMPLE,
SIMPLEC and SIMPLER algorithms. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: momentum interpolation; contravariant velocity fluxes; general curvilinear co-ordinates; non-staggered
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1. INTRODUCTION

Most practical fluid flows occur in complex geometrical configurations. Examples can be
found in such diverse areas as aerodynamics, meteorology, nuclear reactor design, turboma-
chinery and physiology. Although the finite element method appears to be a natural choice due
to its intrinsic geometrical flexibility, the discretized equations for this method are difficult to
derive. The finite difference (volume) method is more likely to be used for the numerical
simulation of fluid flows because its implementation, compared with that of the finite element
method, is very easy and straightforward. However, the application of this method has certain
difficulties and uncertainties in the complex geometries. The major shortcoming is that this
method requires the boundaries of the physical domain to be regular and to coincide with the
co-ordinate system. Otherwise, an elaborate treatment of the boundaries must be made,
namely, an interpolation must be used in the application of the boundary conditions for the
irregular shapes and sizes of boundary cells. An alternative is to generate an orthogonal mesh
which fits the boundaries. However, an apparent shortcoming is that the co-ordinate lines of
curvilinear orthogonal co-ordinates are normal to each other. This feature limits its use in most
practical fluid flows where irregular boundaries prevail. This difficulty can be overcome by
using a non-orthogonal mesh. When applying this method, a body-fitted co-ordinate system is
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defined as a general curvilinear co-ordinate system which follows the boundaries of an
irregular flow field. When partial differential equations are transformed onto such a co-ordi-
nate system, finite difference representations can be made using only the neighboring grid
nodes regardless of the boundary shape or even its movement. The grid lines can be distributed
by a grid generator [1] and mapped from the physical space to the computational space. Thus,
all the computations can be carried out on a fixed rectangular grid in the computational
domain.

The difference among various numerical methods using non-orthogonal grids lies in two
aspects. One is the selection of the dependent variables in the momentum equations. Another
is the grid arrangement. The dependent variables in the momentum equations in general
curvilinear co-ordinates can be Cartesian velocity components or non-Cartesian velocity
components. The latter include contravariant components and covariant components, physical
contravariant components and physical covariant components, contravariant projections (reso-
lutes) and covariant projections.

Mathematically, governing equations in general curvilinear co-ordinates are obtained by
employing two different approaches. One is the ‘partial transformation’. Another is the
‘complete transformation’. Normally, the partial transformation leads to a strongly conserva-
tive form of the Navier–Stokes equations in general curvilinear co-ordinates. The Cartesian
velocity components are usually used as the dependent variables. The complete transformation
leads to a weakly conservative form of the Navier–Stokes equations. The non-Cartesian
velocity components are usually used as the dependent variables. Karki [2] proposed a
calculation procedure in which the complete transformation is avoided but the strongly
conservative form of the Navier–Stokes equations in which the non-Cartesian velocity
components can be used as the dependent variables is still retained. Yang et al. [3] improved
this technique, in which the differentiation operators are applied directly to the velocity vector
itself instead of velocity components. This can eliminate the numerical diffusion due to the
skewness of a flow relative to grid lines.

Another consideration in the numerical simulations is the grid arrangement. To avoid the
splitting of the pressure field which satisfies the momentum equations but is physically
unrealistic, a common practice is to use a staggered grid arrangement. In this arrangement, the
scalar quantities such as pressure are stored at the main grid nodes, whereas the velocity
components, whether Cartesian or non-Cartesian components, are stored at the faces or the
corners of the control volumes. A full description regarding the staggered grid arrangement
can be found in Reference [2]. Although it can successfully prevent the oscillating pressure
field, a staggered grid arrangement also has its own disadvantages. One of the disadvantages
is that the calculations of the coefficients and the geometrical interpolation factors are more
time-consuming when different control volumes are used for different variables. Also, more
interpolations which are necessary for the evaluation of the flow rate at the cell faces may lead
to higher numerical inaccuracy. A non-staggered grid arrangement, due to its geometrical
simplicity, is very attractive. In this arrangement, the scalar quantities and the velocity
components are all stored at the same grid nodes. However, the linear interpolations used to
express the gradients of the pressure in the momentum equations and the velocity variation in
the continuity equation usually result in non-physical oscillation if a non-staggered grid is
used. Special measures must be taken to prevent the splitting of the pressure field. Rhie and
Chow [4] made the first successful attempt to prevent the pressure oscillation on non-staggered
grids in two-dimensional curvilinear co-ordinates. They employed an interpolation practice
called momentum interpolation to evaluate the cell-face velocities. The key idea is to calculate
the cell-face velocities using the discretized momentum equations for two adjacent grid nodes
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separated by the face. Majumdar [5] presented more general formulations of the momentum
interpolation in Cartesian co-ordinates in which the velocity underrelaxation factor appears.
He found that whether a unique converged solution for a flow field can be obtained depends
on the velocity underrelaxation factor used in the momentum interpolation formulations. He
proposed an iterative algorithm to employ the momentum interpolation formulation in order
to achieve a unique solution that is independent of the velocity underrelaxation factor. Miller
and Schmidt [6] developed a momentum interpolation. They estimated the degree of the
dependence of numerical solutions on the velocity underrelaxation factor and obtained a
formulation of the momentum interpolation which is independent of the velocity underrelax-
ation factor for a converged solution in Cartesian co-ordinates. The momentum interpolation
method has achieved great success and is now being widely used in a variety of fluid flow
calculations [7–9].

2. OBJECTIVES

Recently, the strongly conservative form of the Navier–Stokes equations in general curvilinear
co-ordinates has been getting more and more attention. Relatively, the main trend has been to
use the covariant velocity projections rather than the contravariant velocity components or its
variant contravariant velocity fluxes [1,7–9]. The reason lies in two aspects. One is that the
covariant velocity projections align with the curvilinear co-ordinates. Another, the more
important reason, is that the cross pressure gradient terms in the momentum equations
disappear. The merit of single pressure gradient terms in the momentum equations is that
fewer interpolations are required to calculate the pressure gradients when a staggered grid
arrangement is employed. However, this merit becomes unimportant if a non-staggered grid
arrangement is used. If SIMPLE series algorithms are used to solve the governing equations,
non-orthogonal terms in the pressure correction equation cannot be eliminated no matter what
kind of the velocity components are used as the dependent variables. On the other hand, the
discretized continuity equation becomes simple if the contravariant velocity components or
fluxes are used as the dependent variables, although the cross pressure gradient terms in the
momentum equations exist. In general curvilinear co-ordinates, the values of the contravariant
velocity fluxes at the cell faces need to be evaluated to determine the coefficients
(AE, AW, AN, AS, AT, AB) in the discretized momentum equations. A further advantage of using
the contravariant velocity components or fluxes as the dependent variables is that the
momentum interpolation is easily implemented and no additional calculation is needed to
obtain the flow rate through the cell faces. In particular, it is convenient to change the
formulation of the momentum interpolation in the computer code. In fact, Rhie and Chow [4]
employed their original version of the momentum interpolation to calculate the contravariant
velocity fluxes at the cell faces instead of the Cartesian velocity components, although they
chose Cartesian velocity components as the dependent variables.

The purpose of the present work is to study the effect of the grid non-orthogonality on the
convergence behavior. The two-dimensional lid-driven cavity flows are selected for the study.
This problem has been studied by Peric [10] and Cho and Chung [11]. Their work will be
described in a companion article [12]. In the present study, contravariant velocity fluxes are
chosen as the dependent variables together with non-staggered grids. Different formulations of
the momentum interpolation are derived based on Rhie and Chow’s original version and
employed to test their abilities to give a converged solution on non-orthogonal grids. The
SIMPLE [13], SIMPLEC [14] and SIMPLER [15] algorithms are used to solve the discretiza-
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tion equations respectively. It can be expected that combinations of different formulations of
the momentum interpolation with different algorithms (SIMPLE, SIMPLEC, SIMPLER) will
demonstrate different convergence behaviors. The relevant theory is presented in this article.
Results will be given and discussed in a companion article [12].

3. CONSERVATION EQUATIONS

The steady state governing equations for a general dependent variable f can be written in the
following compact form

9 ·J=Sf, (1)

where Sf denotes the source term and J is the total flux made up of the convection flux and
the diffusion flux. J is given by

J=ruf−G9f, (2)

where r is the density of the fluid and G is the diffusivity. For momentum equations, G is the
dynamic viscosity. In Cartesian co-ordinates, J can be expressed as

J=Jxi
ii, (3)

where xi denotes the Cartesian co-ordinates and ii is the unit vector. Jxi
is the Cartesian

components of J and is given by

Jxi
=ruif−G

(f

(xi, (4)

where ui is the Cartesian velocity component. In general curvilinear co-ordinates, J can be
expressed as

J=Jjj
ej, (5)

where j j denotes the curvilinear co-ordinates and ej is the covariant base vector. According to
tensor analysis, the following relationship between Jjj

and Jxi
can be obtained

Jjj
=
(j j

(xi Jxi
. (6)

Substituting Equation (4) into (6) leads to

Jjj
=
(j j

(xi

�
ruif−G

(f

(xi

�
. (7)

Using the chain rule, (f/(xi can be written as

(f

(xi=
(jk

(xi

(f

(jk . (8)

Substituting Equation (8) into (7) gives

Jjj
=
(j j

(xi

�
ruif−G

(jk

(xi

(f

(jk

�
. (9)

The divergence of J in general curvilinear co-ordinates is expressed as
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9 ·J=
1
Ja

�((JaJjj
)

(j j

n
, (10)

where Ja is the Jacobian of the transformation and is expressed as

Ja=Ã
Ã

Ã

Ã

Ã

Ã

Ã

(x1

(j1

(x2

(j1

(x3

(j1

(x1

(j2

(x2

(j2

(x3

(j2

(x1

(j3

(x2

(j3

(x3

(j3

Ã
Ã

Ã

Ã

Ã

Ã

Ã

. (11)

Using Equations (9) and (10), Equation (1) can be written as

1
Ja

(
�

Ja
(j j

(xi

�
ruif−G

(jk

(xi

(f

(jk

�n
(j j =Sf. (12)

For convenience, let

J( i
j=Ja

(j j

(xi. (13)

Equation (12) now becomes

(
�

J( i
jruif−

G
Ja

J( i
jJ( i

k (f

(jk

�
(j j =JaSf. (14)

Equation (14) is the steady state governing equation for a general dependent variable f in
general curvilinear co-ordinates.

The contravariant velocity flux Ui is defined as

Ui=J( i
jruj. (15)

Ui is a variant of the contravariant velocity components Vi which, according to tensor
analysis, can be expressed in terms of ui as

Vi=
(j i

(x j uj=
J( j

i

Ja
uj. (16)

In the present, Ui is chosen as the dependent variable. Equation (14) can be expressed as

(
�

U jf−
G
Ja

J( i
jJ( i

k (f

(jk

�
(j j =JaSf. (17)

4. DISCRETIZATION OF THE CONSERVATION EQUATIONS

The discretization of the conservation equations is performed using the finite volume approach
in the computational space. The physical space is divided into a set of hexahedrons. The grids
are mapped from the physical space to the computational space using a grid generator [1].
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Figure 1. The grid arrangement in the physical space.

Figure 1 and Figure 2 show the grid arrangement in the physical space and the computational
space, respectively. A non-staggered grid arrangement is used.

Equation (14) can be integrated over each control volume in the computational space as
follows��

U1f−
J( k

1J( k
1G

Ja
(f

(j1

�
Dj2Dj3n

w

e

+
��

U2f−
J( k

2J( k
2G

Ja
(f

(j2

�
Dj1Dj3n

s

n

+
��

U3f−
J( k

3J( k
3G

Ja
(f

(j3

�
Dj1Dj2n

b

t

Figure 2. The grid arrangement in the computational space.
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=
�G

Ja
�

J( k
2J( k

1 (f

(j2+J( k
3J( k

1 (f

(j3

�
Dj2Dj3n

w

e

+
�G

Ja
�

J( k
1J( k

2 (f

(j1+J( k
3J( k

2 (f

(j3

�
Dj1Dj3n

s

n

+
�G

Ja
�

J( k
1J( k

3 (f

(j1+J( k
2J( k

3 (f

(j2

�
Dj1Dj2n

b

t

+JaSfDj1Dj2Dj3, (18)

where the subscripts e, w, n, s, t and b denote the cell faces on the east, west, north, south, top
and bottom. In general curvilinear co-ordinates, the diffusive flux consists of the orthogonal
part and the non-orthogonal part. In the present study, the convection and the orthogonal
diffusion, terms both on the left-hand-side of Equation (18), are treated using the hybrid
differencing scheme. The non-orthogonal diffusion terms on the right-hand-side of Equation
(18) are evaluated using a linear f profile and lumped into the source term. The resulting
discretization equation for the dependent variable f can be written in the following general
form

APfP=AEfE+AWfW+ANfN+ASfS+ATfT+ABfB+bf, (19)

where the subscripts P and E, W, N, S, T, B denote the main grid node and its neighboring
nodes on the east, west, north, south, top and bottom, respectively.

4.1. Discretization of continuity equation

Setting f=1 and Sf=0 in Equation (18), gives the following discretized continuity
equation

[U1Dj2Dj3]e− [U1Dj2Dj3]w+ [U2Dj1Dj3]n− [U2Dj1Dj3]s+ [U3Dj1Dj2]t− [U3Dj1Dj2]b

=0. (20)

4.2. Discretization of momentum equations

Having the discretization equation for f (Equation (19)), the discretization equations for the
Cartesian velocity components, uj, ( j=1, 2, 3) can be obtained.

AP(uj)P=AE(uj)E+AW(uj)W+AN(uj)N+AS(uj)S+AT(uj)T+AB(uj)B+buj. (21)

The expressions for the coefficients AP, AE, . . . , AB and the source term buj can be found in
Appendix A.

The discretization equations for the contravariant velocity fluxes Ui can be obtained by
multiplying the discretization equations for (uj)P by (J( j

ir)P and adding them up

AP(Ui)P=AE(Ui)E
0 +AW(Ui)W

0 +AN(Ui)N
0 +AS(Ui)S

0 +AT(Ui)T
0 +AB(Ui)B

0 +bUi
, (22)

where

(Ui)E
0 = (J( j

ir)P(uj)E, (23)

(b)Ui
= (J( j

ir)Pbuj. (24)

Similar expressions can be written for the (Ui)W
0 , (Ui)N

0 , (Ui)S
0, (Ui)T

0 and (Ui)B
0 . Equation (22)

would not have a solution because different variables exist on the two sides of the equation.
This difficulty can be overcome by introducing the ‘actual’ neighbor [2] as follows

AP(Ui)P=AE(Ui)E+AW(Ui)W+AN(Ui)N+AS(Ui)S+AT(Ui)T+AB(Ui)B+bUi
+bCURV

Ui
,

(25)
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where

bCURV
Ui

=AE[(Ui)E
0 − (Ui)E]+AW[(Ui)W

0 − (Ui)W]+AN[(Ui)N
0 − (Ui)N]+AS[(Ui)S

0 − (Ui)S]

+AT[(Ui)T
0 − (Ui)T]+AB[(Ui)B

0 − (Ui)B]. (26)

Equation (25) is the discretized momentum equation using the contravariant velocity fluxes
as the dependent variables and it retains a strongly conservative form. Equation (25) is solved
together with Equation (20). For the convenience of the derivation in the subsequent sections,
Equation (25) is rewritten as

AP(Ui)P=% Anb(Ui)nb+ (Bij)P
� (p
(j j

�
P

+bnP
Ui

, (27)

where the subscript nb runs over the six nearest neighbors of the node P, namely, E, W, N, S,
T and B. bnP

Ui
denotes all the source terms except the pressure gradient terms, and is expressed

as

bnP
Ui

=bUi
+bCURV

Ui
− (Bij)P

� (p
(j j

�
P

. (28)

Bij is given by

Bij= −rJ( k
i Jk

j Dj1Dj2Dj3. (29)

5. MOMENTUM INTERPOLATION SCHEMES

Although the non-staggered grid arrangement is attractive due to its simplicity for the
locations of the variables, the drawback of this arrangement is the occurrence of the
non-physical oscillations of the pressure and/or velocity fields. This is due to the fact that the
resulting equations couple the pressure and the velocities at alternate nodes only, if a linear
interpolation is used to express the internodal pressure gradients in the momentum equations
and the velocity variation in the continuity equation. In order to suppress oscillations, a special
interpolation practice called momentum interpolation is adopted. In this practice, the velocities
at the cell face are calculated by ‘algebraically’ using the discretized momentum equations for
two adjacent nodes instead of solving the discretized momentum equations for the node at the
cell face as done in the staggered grid arrangement. In this section, different formulations of
the momentum interpolation in general curvilinear co-ordinates are presented.

The cross pressure gradient terms exist in Equation (27). However, the main pressure
gradient terms are separated from the source terms and the cross terms are lumped into the
source terms when the momentum interpolation scheme is adopted. Divided by AP, Equation
(27) can be written in a more compact form

(Ui)P= (HU i)P+ (Cii)P
� (p
(j i

�
P

for node P, (30a)

(Ui)P+1= (HU i)P+1+ (Cii)P+1
� (p
(j i

�
P+1

for node P+1, (30b)

where HU i is the summation of all the terms except the main pressure gradient term and is
given by

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1265–1280 (1998)



EFFECT OF NON-ORTHOGONALITY FOR NON-STAGGERED GRIDS 1273

HU i=
�% Anb(Ui)nb+ (Bij)

� (p
(j j

�
+bnP

Ui
− (Bii)

� (p
(j i

�n,
AP. (31)

Node P+1 is the neighboring node of P, namely, E, N or T. Cii is given by

Cii=
Bii

AP

. (32)

Here, Bii and AP are treated as a whole. It is noted here that there is no summation over the
index i for all equations in this section.

Usually, an underrelaxation factor is introduced into the discretization equation to ensure
the convergence. Hence, Equation (30a) can be written as

(Ui)P=aU i

�
(HU i)P+ (Cii)P

� (p
(j i

�
P

n
+ (1−aU i)(Ui)P

(n−1)= (hU i)P+aU i(Cii)P
� (p
(j i

�
P

, (33)

where aU i is the velocity underrelaxation factor, (Ui)(n−1) is the value of Ui at the level of last
iteration, and

(hU i)P=aU i(HU i)P+ (1−aU i)(Ui)P
(n−1). (34)

Similarly, Equation (30b) can be written as

(Ui)P+1= (hU i)P+1+aU i(Cii)P+1
� (p
(j i

�
P+1

, (35)

where

(hU i)P+1=aU i(HU i)P+1+ (1−aU i)(Ui)P+1
(n−1). (36)

One way to carry out the momentum interpolation scheme is to write the discretization
equation at the cell face P+1/2 (P+1/2 denotes the cell faces e, n or t) as

(Ui)P+1/2= [f +(hU i)P+1+ (1− f +)(hU i)P]+aU i(Cii)P+1/2
� (p
(j i

�
P+1/2

, (37)

where f + is the geometric interpolation factor and is given by

f + =
d(P)(P+1/2)

d(P)(P+1/2)+d(P+1/2)(P+1)

, (38)

where d(P)(P+1/2) stands for the distance between the node P and the face P+1/2, while
d(P+1/2)(P+1) is the distance between the face P+1/2 and the node P+1. In Equation (37),
(Cii)P+1/2 can be evaluated by a linear interpolation of (Cii)P and (Cii)P+1. ((P/(j i)P+1/2 can
be discretized using the nodes P and P+1. Majumdar [5] has shown that using such a
momentum interpolation formulation (Equation (37)) will not lead to a unique solution for a
given flow field in Cartesian co-ordinates. This is because the solution depends on the
underrelaxation factor aU i. Our computational results also confirm this in general curvilinear
co-ordinates. Therefore, Equation (37) should be discarded.

Another way to evaluate the Ui value at the face P+1/2 is to carry out the underrelaxation
explicitly, namely

(Ui)P+1/2=aU i

�
(HU i)+ (Cii)P+1/2

� (p
(j i

�
P+1/2

n
+ (1−aU i)(Ui)P+1/2

(n−1) , (39)

where
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HU i= f +(HU i)P+1+ (1− f +)(HU i)P. (40)

In Cartesian co-ordinates, Majumdar [5] has shown that such implementation of the mo-
mentum interpolation can result in a unique solution for a given flow field. Our computa-
tion experience also confirms this in general curvilinear co-ordinates. In the present work,
this formulation is adopted to be a starting point for further derivation.

There are two practices for evaluating (HU i) and (HU i)P+1. One practice to calculate the
values of (HU i)P and (HU i)P+1 is to use Equation (31). Substituting Equation (31) into (40)
and then (39) gives

(Ui)P+1/2=aU i

�
f +�% Anb(Ui)nb+ (Bij)

� (p
(j j

�
+bnP

Ui
− (Bii)

� (p
(j i

��
P+1

,
AP+1

+ (1− f +)
�% Anb(Ui)nb+ (Bij)

� (p
(j j

�
+bnP

Ui
− (Bii)

� (p
(j i

��
P

,
AP

+ (Cii)P+1/2
� (p
(j i

�
P+1/2

n
+ (1−aU i)(Ui)P+1/2

(n−1) . (41)

This practice is denoted as Practice A in the present work. Equation (41) is the expression
for (Ui)P+1/2. In another practice, the values of (HU i)P and (HU i)P+1 are calculated based
on Equations (30a) and (30b). That is

(HU i)P= (Ui)P− (Cii)P
� (p
(j i

�
P

, (42a)

and

(HU i)P+1= (Ui)P+1− (Cii)P+1
� (p
(j i

�
P+1

. (42b)

Substituting these two equations into Equation (40) and then (39) gives

(Ui)P+1/2=aU i

�
f +(Ui)P+1+ (1− f +)(Ui)P+ (Cii)P+1/2

� (p
(j i

�
P+1/2

− f +(Cii)P+1
� (p
(j i

�
P+1

− (1− f +)(Cii)P
� (p
(j i

�
P

n
+ (1−aU i)(Ui)

P+1/2
(n−1) . (43)

This practice is denoted as Practice B in the present work and Equation (43) is its expres-
sion for (Ui)P+1/2. In short, the difference between the two Practices is how to evaluate
(HU i)P and (HU i)P+1, which result in different expressions for (Ui)P+1/2, i.e. Equation (41)
for Practice A and Equation (43) for Practice B. In Equation (41) the velocity values and
the coefficients are used before the solver is called to solve the nodal momentum equations.
In Equation (43), the new velocity values are used after the solver is called. This could
influence the convergence behavior as shown in the companion paper [12].

Both Equation (41) (Practice A) and Equation (43) (Practice B) have velocity underrelax-
ation factors in them. To make these two equations simpler, aU i can be set to 1. Thus,
Equations (41) and (43) become
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(Ui)P+1/2= f +�% Anb(Ui)nb+ (Bij)
� (p
(j j

�
+bnP

Ui
− (Bii)

� (p
(j i

��
P+1

,
AP+1

+ (1− f +)
�% Anb(Ui)nb+ (Bij)

� (p
(j j

�
+bnP

Ui
− (Bii)

� (p
(j i

��
P

,
AP

+ (Cii)P+1/2
� (p
(j i

�
P+1/2

, (44)

and

(Ui)P+1/2= f +(Ui)P+1+ (1− f +)(Ui)P+ (Cii)P+1/2
� (p
(j i

�
P+1/2

− f +(Cii)P+1
� (p
(j i

�
P+1

− (1− f +)(Cii)P
� (p
(j i

�
P

. (45)

Equations (41) and (43) and Equations (44) and (45) are momentum interpolation formula-
tions for Practice A and Practice B with and without the velocity underrelaxation factor, aU i,
respectively. The velocity underrelaxation factor aU i in the discretized momentum equations
(Equation (33)) is always retained, no matter which momentum interpolation formulation is
used. However, the value of aU i in the momentum interpolation formulation is set to be
identical with that in the discretized momentum equations if a momentum interpolation
formulation with aU i, i.e. Equation (41) or (43), is used.

If (Cii)P and (Cii)P+1, are assumed to be approximately equal to (Cii)P+1/2, Equation (45)
becomes the Rhie and Chow’s momentum interpolation formulation [4]. Furthermore, Equa-
tion (45) can be considered as an extension of Miller and Schmidt’s formulation [6] to the
general curvilinear co-ordinates. It is noted that using these two practices either with aU i, or
without aU i can always result in the same solution for a given flow field, no matter what value
for aU i is used, and Rhie and Chow’s formulation also leads to a unique solution. However,
these two solutions are different in accuracy due to the approximation made by setting (Cii)P

and (Cii)P+1 in Equation (45) to be (Cii)P+1/2 in Rhie and Chow’s formulation respectively.
Obviously, the accuracy of Rhie and Chow’s formulation is lower than that of Equation (45).
In the present work, both Practice A and Practice B with and without aU i, are tested to show
their abilities to give a converged solution on non-orthogonal grids.

6. TREATMENT OF THE PRESSURE–VELOCITY COUPLING

The coupling between the momentum equations and the continuity equation is done by using
the SIMPLE [13], SIMPLEC [14] and SIMPLER [15] algorithms. These three algorithms are
combined with Practice A and Practice B to solve the governing equations, respectively.

The resulting velocity field from the momentum equations generally does not satisfy the
continuity equation unless the correct pressure field is employed. Such an imperfect velocity
field based on the imperfect pressure field p* is denoted by (Ui)*. This ‘starred’, velocity field
results from the solution of Equation (27)

AP(Ui)P*=% Anb(Ui)nb* + (Bij)P
�(p*
(j j

�
P

+bnP
Ui

. (46)

In both SIMPLE and SIMPLEC algorithms, p* is initiated by guessing its value, while in
SIMPLER algorithm it is initiated by solving a Poisson-like equation based on the continuity
equation. The velocity correction can be expressed as
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(Ui)%P= (B. ij)P
�(p %
(j j

�
P

. (47)

Equation (47) is obtained by first subtracting Equation (46) from (27) and then making some
assumptions according to the SIMPLE series algorithms. B. ij is a coefficient and it is different
for different algorithms. Its full expression can be found in Appendix B. p % is the pressure
correction. The corrected velocity field is given by

Ui= (Ui)*+ (Ui)%= (Ui)*+B. ij (p %
(j j. (48)

Substituting Equation (48) into the continuity equation (Equation (20)) gives the following
pressure correction equations

APp %P=% Anbp %nb+SP, (49)

where

AE=
�B. 11Dj2Dj3

Dj1

�
e

, AN=
�B. 22Dj1Dj3

Dj2

�
n

, AT=
�B. 33Dj1Dj2

Dj3

�
t

,

AP=% Anb, (50)

SP=mP+SNO. (51)

The coefficients AW, AS, and AB can be expressed in a similar way as AE, AN and AT. In
Equation (51), mP is calculated by Equation (20) with Ui replaced by (Ui)*, and

SNO=
��

B. 12 (p %
(j2+B. 13 (p %

(j3

�
Dj2Dj3n

w

e

+
��

B. 21 (p %
(j1+B. 23 (p %

(j3

�
Dj1Dj3n

s

n

+
��

B. 31 (p %
(j1+B. 32 (p %

(j2

�
Dj1Dj2n

b

t

. (52)

In the present study, the non-orthogonal term SNO is omitted in order to simplify the
pressure correction equation. Hence, Equation (49) has a seven-nodal coefficient matrix. After
Equation (49) is solved, the velocity field is corrected using Equation (48). In both SIMPLE
and SIMPLEC algorithms, the pressure field is corrected by

p=p*+app %, (53)

where ap is the pressure underrelaxation factor. For the SIMPLE algorithm, ap is usually B1.
For the SIMPLEC algorithm, it could be 1. In the SIMPLER algorithm, p is corrected by
solving a Poisson-like equation based on the continuity equation, which is very similar to
Equation (49). In this Poisson-like equation, p % is replaced by p, mp is calculated using the
pseudovelocities, and SNO can be treated explicitly.

7. CONCLUDING REMARKS

In this article, the contravariant velocity fluxes were used as the dependent variables in the
momentum equations in body fitted co-ordinates. The discretization equations for contravari-
ant velocity fluxes were derived from those for Cartesian velocity components and retain a
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strongly conservative form. The hybrid differencing scheme was employed to discretize the
convection and orthogonal diffusion terms in the momentum equations. The non-staggered
grid arrangement was adopted. Two different practices for treating the momentum interpola-
tion, namely Practice A and Practice B, were presented. In each practice, the momentum
interpolation formulations with and without a velocity underrelaxation factor were considered.
The formulation of Practice B can be reduced to the Rhie and Chow’s formulation [4] if some
simplifications are made. Also, Practice B can be considered as an extension of Miller and
Schmidt’s formulation [6]. The coupling between the momentum equations and the continuity
equation was done using the SIMPLE, SIMPLEC and SIMPLER algorithms, respectively.
The non-orthogonal terms in the pressure correction equation were omitted. Each of these
three algorithms is to be combined with Practice A and Practice B to study the effect of the
grid non-orthogonality by solving the typical cavity flows. The results are given in a
companion article [12].

APPENDIX A

In the present study, the hybrid differencing scheme is used to discretize the convection and
orthogonal diffusion terms. Therefore, the coefficients AE, AW, AN, AS, AT, AB and AP in
Equation (21) are expressed as

AE=DeA(�Pee�)+ (�−Fe, 0�), AW=DwA(�Pew�)+ (�Fw, 0�),
AN=DnA(�Pen�)+ (�−Fn, 0�), AS=DsA(�Pes�)+ (�Fs, 0�),
AT=DtA(�Pet�)+ (�−Ft, 0�), AB=DbA(�Peb�)+ (�Fb, 0�),
AP=AE+AW+AN+AS+AT+AB, (A1)

where

A(�Pee�)=max(0, 1.0, −0.5�Pee�). (A2)

Similar expressions can be written for A(�Pew�), A(�Pen�), A(�Pes�), A(�Pet�) and A(�Peb�). In
Equation (A1), Fe, Fw, Fn, Fs, Ft and Fb are the flow fluxes through the cell faces e, w, n, s,
t and b, respectively. They are written as

Fe= [U1Dj2Dj3]e, Fw= [U1Dj2Dj3]w, Fn= [U2Dj3Dj1]n,

Fs= [U2Dj3Dj1]s, Ft= [U3Dj1Dj2]t, Fb= [U3Dj1Dj2]b. (A3)

De, Dw, Dn, Ds, Dt and Db are the orthogonal diffusion conductances and are written as

De=
�J( k

1J( k
1GDj2Dj3

Jadj1

n
e

, Dw=
�J( k

1J( k
1GDj2Dj3

Jadj1

n
w

, Dn=
�J( k

2J( k
2GDj1Dj3

Jadj2

n
n

,

Ds=
�J( k

2J( k
2GDj1Dj3

Jadj2

n
s

, Dt=
�J( k

3J( k
3GDj1Dj2

Jadj3

n
t

, Db=
�J( k

3J( k
3GDj1Dj2

Jadj3

n
b

. (A4)
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Pe is the Peclet number, which, for example at the cell face e, is defined as

Pee=
Fe

De

. (A5)

Similar definitions are applied to the Pe on the cell faces at w, n, s, t and b.
The source term buj in Equation (21) is expressed as

buj= (De1−Dw1+Dt2−Db2)(uj)N+ (Dw1−De1+Db2−Dt2)(uj)S

+ (Dn1−Ds1+Dt1−Db1)(uj)E+ (Ds1−Dn1+Db1−Dt1)(uj)W

+ (Dn2−Ds2+De2−Dw2)(uj)T+ (Ds2−Dn2+Dw2−De2)(uj)B

+ANE(uj)NE+ANW(uj)NW+ASE(uj)SE+ASW(uj)SW+AET(uj)ET+AWT(uj)WT

+ANT(uj)NT+AST(uj)ST+AEB(uj)EB+AWB(uj)WB+ASB(uj)SB+ANB(uj)NB, (A6)

where De1, Dw1, . . . , are the non-orthogonal diffusion conductances and are given by

De1=
�J( k

2J( k
1GDj2Dj3

4Jadj2

n
e

, Dw1=
�J( k

2J( k
1GDj2Dj3

4Jadj2

n
w

, De2=
�J( k

3J( k
1GDj2Dj3

4Jadj3

n
e

,

Dw2=
�J( k

3J( k
1GDj2Dj3

4Jadj3

n
w

, Dn1=
�J( k

1J( k
2GDj1Dj3

4Jadj1

n
n

, Ds1=
�J( k

1J( k
2GDj1Dj3

4Jadj1

n
s

,

Dn2=
�J( k

3J( k
2GDj1Dj3

4Jadj3

n
n

, Ds2=
�J( k

3J( k
2GDj1Dj3

4Jadj3

n
s

, Dt1=
�J( k

1J( k
3GDj1Dj2

4Jadj1

n
t

,

Db1=
�J( k

1J( k
3GDj1Dj2

4Jadj1

n
b

, Dt2=
�J( k

2J( k
3GDj1Dj2

4Jadj2

n
t

, Db2=
�J( k

2J( k
3GDj1Dj2

4Jadj2

n
b

,

(A7)

and

ANE=Dn1+De1, ANW= − (Dn1+Dw1), ASE= − (Ds1+De1),

ASW=Ds1+Dw1, AET=De2+Dt1, AWT= − (Dt1+Dw2),

ANT=Dn2+Dt2, AST= − (Dt2+Ds2), AEB= − (Db1+De2),

AWB=Dw2+Db1, ASB=Db2+Ds2, ANB= − (Dn2+Db2). (A8)

The non-orthogonal diffusion conductances are zero in orthogonal co-ordinates.

APPENDIX B

In the SIMPLE [13] and SIMPLER [15] algorithms, the coefficient (B. ij)P in Equation (46) is
written as

B. ij=
(Bij)P

AP

. (B1)
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In the SIMPLEC [14] algorithm, this coefficient is written as

B. ij=
(Bij)P

AP−% Anb

. (B2)

However, the denominator AP−� Anb is zero according to Equation (A1). Fortunately, this
can be avoided when the underrelaxation factor aU i is introduced into the momentum nodal
equations to ensure the convergence, as shown in Equation (33). Thus, Equation (B2) becomes

B. ij=
(Bij)P

AP/aU i−% Anb

. (B3)

Since 0BaU iB1.0, AP/aU i−� Anb is always greater than 0.

NOMENCLATURE

A coefficient in the discretized equations
b source term in the discretized equations
Bij, B. ij, Cij coefficients of the pressure gradient terms

distance between the node and the cell faced
D diffusion conductance
ei covariant base vector
f+ geometric interpolation factor
F flow flux

given by Equation (32)h
H all the terms on the right-hand-side of the discretized momentum equations

except the main pressure gradient term
ii Cartesian unit vector

convective and diffusive flux vectorJ
Jxi

Cartesian component of J
Jji

curvilinear component of J
J( defined by Equation (13)
Ja Jacobian of the transformation
mP mass residual in the discretized P % equation

pressurep
Pe Peclet number
S source term in the governing equation and in the discretized p % equation
u velocity vector
ui Cartesian velocity component
Ui contravariant velocity flux
Vi contravariant velocity component
xi Cartesian co-ordinates
aU i velocity underrelaxation factor

pressure underrelaxation factorap

d nodal difference
D control volume difference
f general dependent variable
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G diffusivity
m dynamic viscosity
j i general curvilinear co-ordinates
r density

Indices

i, j, k co-ordinate direction identifiers

Subscripts

values at the cell facese, w, n, s,
t, b
E, W, N, S, values at the nodal points
T, B

main nodal pointP

Superscripts

uncorrected values*
% corrected values
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